Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
PLoS One ; 17(1): e0262462, 2022.
Article in English | MEDLINE | ID: covidwho-1630364

ABSTRACT

Remdesivir and dexamethasone are the only drugs providing reductions in the lengths of hospital stays for COVID-19 patients. We assessed the impacts of remdesivir on hospital-bed resources and budgets affected by the COVID-19 outbreak. A stochastic agent-based model was combined with epidemiological data available on the COVID-19 outbreak in France and data from two randomized control trials. Strategies involving treating with remdesivir only patients with low-flow oxygen and patients with low-flow and high-flow oxygen were examined. Treating all eligible low-flow oxygen patients during the entirety of the second wave would have decreased hospital-bed occupancy in conventional wards by 4% [2%; 7%] and intensive care unit (ICU)-bed occupancy by 9% [6%; 13%]. Extending remdesivir use to high-flow-oxygen patients would have amplified reductions in ICU-bed occupancy by up to 14% [18%; 11%]. A minimum remdesivir uptake of 20% was required to observe decreases in bed occupancy. Dexamethasone had effects of similar amplitude. Depending on the treatment strategy, using remdesivir would, in most cases, generate savings (up to 722€) or at least be cost neutral (an extra cost of 34€). Treating eligible patients could significantly limit the saturation of hospital capacities, particularly in ICUs. The generated savings would exceed the costs of medications.


Subject(s)
Adenosine Monophosphate/analogs & derivatives , Alanine/analogs & derivatives , Antiviral Agents/economics , Bed Occupancy/economics , Dexamethasone/economics , Adenosine Monophosphate/economics , Adenosine Monophosphate/therapeutic use , Alanine/economics , Alanine/therapeutic use , Antiviral Agents/therapeutic use , Bed Occupancy/statistics & numerical data , COVID-19/economics , COVID-19/virology , Dexamethasone/therapeutic use , France , Hospitalization/economics , Hospitalization/statistics & numerical data , Humans , Intensive Care Units , Length of Stay , Models, Statistical , SARS-CoV-2/isolation & purification , COVID-19 Drug Treatment
2.
Sci Rep ; 11(1): 17787, 2021 09 07.
Article in English | MEDLINE | ID: covidwho-1397899

ABSTRACT

Despite COVID-19's significant morbidity and mortality, considering cost-effectiveness of pharmacologic treatment strategies for hospitalized patients remains critical to support healthcare resource decisions within budgetary constraints. As such, we calculated the cost-effectiveness of using remdesivir and dexamethasone for moderate to severe COVID-19 respiratory infections using the United States health care system as a representative model. A decision analytic model modelled a base case scenario of a 60-year-old patient admitted to hospital with COVID-19. Patients requiring oxygen were considered moderate severity, and patients with severe COVID-19 required intubation with intensive care. Strategies modelled included giving remdesivir to all patients, remdesivir in only moderate and only severe infections, dexamethasone to all patients, dexamethasone in severe infections, remdesivir in moderate/dexamethasone in severe infections, and best supportive care. Data for the model came from the published literature. The time horizon was 1 year; no discounting was performed due to the short duration. The perspective was of the payer in the United States health care system. Supportive care for moderate/severe COVID-19 cost $11,112.98 with 0.7155 quality adjusted life-year (QALY) obtained. Using dexamethasone for all patients was the most-cost effective with an incremental cost-effectiveness ratio of $980.84/QALY; all remdesivir strategies were more costly and less effective. Probabilistic sensitivity analyses showed dexamethasone for all patients was most cost-effective in 98.3% of scenarios. Dexamethasone for moderate-severe COVID-19 infections was the most cost-effective strategy and would have minimal budget impact. Based on current data, remdesivir is unlikely to be a cost-effective treatment for COVID-19.


Subject(s)
COVID-19 Drug Treatment , COVID-19/therapy , Health Care Costs/statistics & numerical data , Health Care Rationing/economics , Adenosine Monophosphate/analogs & derivatives , Adenosine Monophosphate/economics , Adenosine Monophosphate/therapeutic use , Alanine/analogs & derivatives , Alanine/economics , Alanine/therapeutic use , COVID-19/diagnosis , COVID-19/economics , COVID-19/mortality , COVID-19/virology , Clinical Decision-Making/methods , Computer Simulation , Cost-Benefit Analysis , Dexamethasone/economics , Dexamethasone/therapeutic use , Health Care Rationing/organization & administration , Humans , Intensive Care Units/economics , Intensive Care Units/statistics & numerical data , Middle Aged , Oxygen/administration & dosage , Oxygen/economics , Quality-Adjusted Life Years , Respiration, Artificial/economics , SARS-CoV-2 , Severity of Illness Index , Treatment Outcome , United States/epidemiology
3.
Nat Commun ; 12(1): 915, 2021 02 10.
Article in English | MEDLINE | ID: covidwho-1078584

ABSTRACT

Dexamethasone can reduce mortality in hospitalised COVID-19 patients needing oxygen and ventilation by 18% and 36%, respectively. Here, we estimate the potential number of lives saved and life years gained if this treatment were to be rolled out in the UK and globally, as well as the cost-effectiveness of implementing this intervention. Assuming SARS-CoV-2 exposure levels of 5% to 15%, we estimate that, for the UK, approximately 12,000 (4,250 - 27,000) lives could be saved between July and December 2020. Assuming that dexamethasone has a similar effect size in settings where access to oxygen therapies is limited, this would translate into approximately 650,000 (240,000 - 1,400,000) lives saved globally over the same time period. If dexamethasone acts differently in these settings, the impact could be less than half of this value. To estimate the full potential of dexamethasone in the global fight against COVID-19, it is essential to perform clinical research in settings with limited access to oxygen and/or ventilators, for example in low- and middle-income countries.


Subject(s)
COVID-19 Drug Treatment , Dexamethasone/therapeutic use , COVID-19/economics , COVID-19/mortality , COVID-19/therapy , Cost-Benefit Analysis , Dexamethasone/economics , Hospital Mortality , Hospitalization , Humans , Quality-Adjusted Life Years , Respiration, Artificial , SARS-CoV-2 , United Kingdom/epidemiology , Ventilators, Mechanical
SELECTION OF CITATIONS
SEARCH DETAIL